
COMPLEX MULTIPLICATION: LECTURE 5

1. Complex tori

Let us take stock of where we are. As Yihang has shown, knowledge of how
primes decompose in finite extensions of Q really help us when trying to solve
concrete number theoretic problems. In turn, we can detect how primes decompose
by finding explicit generators of the Hilbert class field. In general then, the problem
we consider is that of producing explicit generators for the abelian extensions of a
number field. In this course we restrict attention to quadratic imaginary extensions
of Q.

The starting point for complex multiplication is the following theorem due to
Kronecker and Weber.

Theorem 1.1. (Kronecker-Weber) Let F/Q be a finite abelian extension of Q, then
∃n such that

F ⊂ Q(ζn)

where ζn is a primitive root of unity.

This theorem says that in order to produce abelian extension of Q you only need
to use roots of unity. The roots of unity are the images of torsion the points on
the group C/2πiZ under the holomorphic map exp. Thus one can interpret this
theorem as saying the abelian extensions of Q are generated by the images of special
points under the image of a holomorphic map.

Thus one way to approach the problem of generalising this theorem would be
to consider suitable analogues of the Riemann surface C/2πiZ and to look at the
images of certain special under certain holomorphic maps on this Riemann sur-
face. This can be achieved through theory of elliptic/modular curves and elliptic/
modular functions.

1.1. Riemann surfaces. In this section we will introduce complex tori, which over
C are the same thing as elliptic curves. We will prove the set of the isomorphism
classes of complex tori are naturally in bijection with some other Riemann surface
known as the modular curve. Of course since we are really interested in arithmetic,
we need some sort of algebraic incarnation of these objects, more precisely we will
prove that any complex tori is naturally in bijection with set of solutions on an
equation of the form

y2 = ax3 + bx+ c

This result, known as the uniformisation theorem is extremely important as it
forms a bridge between the worlds of complex analysis and algebra.

Let us first review the definition of Riemann surfaces, these are objects which
first arose in trying to find better domains of definitions of holomorphic functions.

To motivate the definition, let us first consider the log function on the complex
plane. There are many ways to define this function, see Ahlfors. but morally
one should think of it as the inverse of the exponential function. However the
exponential is neither surjective nor injective. If we wanted to define an inverse,
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the non-surjectivity is not a big problem; one could just restrict to the image of
exp which is C×. Similiarly one could try and get around the non-injectivity in
defining log by picking a particular pre-image. Since ex = ey if and only if y − x
is a multiple of 2πi, any two preimages will differ by a multiple of 2πi. Now exp
is locally biholomorphic (bijective holomorphic with holomorphic inverse) hence if
we pick a particular value for log(1), this will determine the value in any small
neighbourhood about 1.

Now suppose we walk around the circle of radius 1 and try and define log on
the circle. We see that the continuity forces the value at the end of the path to
differ from the value at the beginning by 2πi. Thus we cannot extend log to a
holomorphic function on the whole C, however it is easy to see that we can define
it on C− [0,∞). This is still somewhat unsatisfactory.

This problem can be resolved by noticing that exp is a bijection from [2πin, 2πi(n+
1)) to C− [0,∞) for all n ∈ Z. Then taking Z copies of C− [0,∞) and gluing them
together along the line [0,∞) we obtain a space which locally is isomorphic to C and
for which is a natural domain of definition for log. In our case the space obtained
looks like an infinite helix and furnishes our first example of a Riemann surface.

Now we come to the general definition of Riemann surfaces. Let X be a Hausdorff
topological space. The definition below gives a sense to concept of X being locally
the same as C.

Definition 1.2. A chart on X is a pair (U, φ) where U is an open subset of X and

φ : U → V

is a homeomorphism from U to an open ball V ⊂ C.
Given two charts (Uα, φα), (Uβ , φβ) the transition function ϕαβ is defined to be

the map

φβ ◦ φ−1
α |φα(Uα∩Uβ) : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

An atlas on X is a collection of charts (Uα, φα)α∈A such that
⋃
α∈A Uα = X and

the transition functions ϕα,β are holomorphic.

Definition 1.3. A Riemann surface is a Hausdorff topological space X together
with an atlas (Uα, φα).

Exercise: Show that the sphere S defined by the equation x2 + y2 + z2 = 1 is a
Riemann surface by using the charts given by the open covering U1 = S − (0, 0, 1)
and U2 = S− (0, 0,−1) and the φi the homoemorphisms onto the (x, y)-plane given
by projection from (0, 0, 1) and (0, 0,−1) respectively. We will denote this Riemann
surface by P1(C) and it is compact.

You should think of a Riemann surface as some topological space which is locally
isomorphic to an open ball in C, the notion of an atlas formalises this idea. There is
notion of equivalence between atlases on X, two equivalent atlases define equivalent
Riemann surface structures on X. This notion will not concern us as most of the
time we will be working with very explicit atlases.

Since holomorphicity of map is a completely local property, the complex structure
on a Riemann surface allows us to define the notion of a holomoprhic map between
Riemann surfaces.
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Definition 1.4. Let X and Y be Riemann surfaces with atlases (Uα, φα), (Wβ , ψβ),
a map f : X → Y is holomorphic if the composite map

ψβ ◦ f ◦ φ−1
α |φα(Uα∩φ−1(Wβ)) : φα(Uα ∩ φ−1(Wβ))→ ψβ(Wβ)

is a holomorphic map
A holomorphic map f : X → P1(C) is a called a meromorphic map.

Remark 1.5. When X = C this definition coincides with the standard definition
meromorphic function. Indeed the condition that the singularities of f are at worst
poles, is precisely the condition required so that f extends to a holomorphic map
f : C→ P1(C).

The next result is an analogue of Liouville’s theorem in the context of Riemann
surfaces.

Proposition 1.6. Let f : X → C be a holomorphic map where X is a compact
Riemann surface. Then f is constant.

Proof. By the open mapping theorem f(X) is open, but f(X) is also compact hence
closed. Since C is connected f(X) = C, contradicting f(X) compact. �

1.2. Complex tori. In the following we give a way of constructing a large class of
Riemann surfaces.

Definition 1.7. A lattice Λ in C is a free Z-submodule of C of rank 2. As such
any lattice consists of complex numbers of the form nω1 +mω2 for some ω1, ω2 two
R-linearly independent elements of C. We write Λ = 〈ω1, ω2〉.

Example 1.8. Let τ be any element of the upper half plane h in C, i.e.

h = {z ∈ C : =z > 0}
Then define the lattice Λτ to be the free Z submodule of C generated by 〈1, τ〉.

Definition 1.9. Let Λ be a lattice in C, we define EΛ to be the quotient space
C\Λ. We will call any such space a complex torus.

(Technically speaking it is a complex torus of dimension one, but since we do
not consider higher dimensional complex manifolds we will us this term for ease of
notation)

One sees without too much difficulty, that topologically EΛ is a torus (i.e. dough-
nut) and that it is compact as a topological space. The addition on C also carries
over to C/Λ so that it is endowed with an abelian group structure with identity
element 0, the image of the origin.

Proposition 1.10. EΛ has the natural structure of a Riemann surface.

Proof. Since the action of Λ on C is free, by definition of the quotient topology any
sufficiently small open set in C/Λ is isomorphic to an open set in C. This allows
us to define charts covering C/Λ and the transition maps are just the identity on
subset of C so we have an atlas. �

Given a lattice Λ in C and α ∈ C×, the set {αz : z ∈ Λ} is also a lattice which we
denote by αΛ. Now suppose we have two lattices Λ1 and Λ2, and suppose ∃α ∈ C×
such that αΛ1 ⊂ Λ2, then the multiplication by α defines a map C → C which
induces a map

[α] : EΛ1
→ EΛ2
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and it is clear that such a map is holomorphic and preserves the group structure
of the tori.

Amazingly these are the only maps between complex tori.

Proposition 1.11. Let f : EΛ1
→ EΛ2

be a holomorphic map of complex tori
which maps 0 to 0. Then f is the map [α] for some α ∈ C× for which αΛ1 ⊂ Λ2.

Proof. Since C is simply connected, the map C→ EΛ1
→ EΛ2

lifts to a continuous
map F

C F
> C

EΛ1

∨
f
> EΛ

∨

where the vertical maps are just the natural projections and we can assume F maps
0 to 0.. Since the projections πi : C → EΛi are local isomorphisms, the map F is
holomorphic.

Let ω ∈ Λ1, then G(z) = F (z + ω) − F (z) takes values in Λ2 which is discrete,
hence G(z) is constant. Thus F ′(z+ω) = F ′(z) and since this is true for all ω ∈ Λ1,
by considering F ′ on a fundamental parallelogram we conclude that F ′ is bounded.
It follows from Liouville’s theorem that F is constant, i.e. F (z) = αz + β. As f
maps 0 to 0, we must have β ∈ Λ2, and we conclude that f is the map [α]. �

We call any holomorphic map between complex tori which maps 0 to 0 a homo-
morphism of complex tori (it is an isomorphism if it is also surjective). It follows
from the above Proposition that any homomorphism of complex tori also preserves
the group structure (since it is of the form z 7→ αz). A natural question to ask then
is what are the isomorphism classes of complex tori?

Definition 1.12. Let Λ1,Λ2 be two lattices in C. We say Λ1 and Λ2 are homothetic
if there exists α ∈ C× such that αΛ1 = Λ2.

The following is a direct consequence of Proposition 1.10

Corollary 1.13. Two complex tori EΛ1
, EΛ2

are isomorphic if and only Λ1 and
Λ2 are homothetic.

Thus if we want to classify complex tori up to isomorphism, all we need to is
classify lattices in C up to homothety!

Let Λ = 〈ω1, ω2〉 be a lattice in C, wlog. we may assume ω1/ω2 ∈ h. Then Λ
is homothetic to the lattice ω−1

2 Λ = 〈1, ω1/ω2〉, so that every lattice is homothetic
to a lattice of the form Λτ as in Example 2.8. Thus we need to consider when two
lattice Λτ1 ,Λτ2 are homothetic. Let Γ be the group SL2(Z), then Γ acts on h in
the following way.

γ =

(
a b
c d

)
∈ Γ, γτ =

aτ + b

cτ + d

Exercise: Let γ be as above, then prove

=γ(z) =
det(γ)

|cz + d|2
=z

Proposition 1.14. Two lattices Λτ1 and Λτ2 are homothetic if and only if τ2 = γτ1
for some γ ∈ Γ
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Proof. Let γ be as above, then Λγτ is homothetic to the lattice 〈aτ + b, cτ +d〉, but
since ad− bc = 1, this lattice is just Λτ .

Conversely, let us suppose Λτ1 and Λτ2 are homothetic, so that ∃α ∈ C× such
that 〈α, ατ2〉 = 〈1, τ1〉. Thus α = cτ1 + d for some c, d ∈ Z and ατ2 = aτ1 + b for
some a, b ∈ Z. Similarly there are w, x, y, z ∈ Z such that

τ1 = w(aτ1 + b) + x(cτ1 + d)

1 = y(aτ1 + b) + z(cτ1 + d)

Since τ1 and 1 are Z linearly independent, this condition is equivalent to(
w x
y z

)(
a b
c d

)
=

(
1 0
0 1

)
Therefore det(γ) ∈ {±1}, but one checks that

=τ2 = =aτ1 + b

cτ1 + d
=

det(γ)

|cτ1 + d|2
=τ1

Then since =τ1,=τ2 > 0 we have det(γ) > 0 and hence γ ∈ SL2(Z). �

Thus we may identify the set of isomorphism classes of complex tori with Γ\h.
This in turn can be identified with a nice set of representatives as in the following
proposition. Let us define the following elements of Γ:

µ =

(
0 1
−1 0

)
, ζ =

(
1 1
0 1

)
Proposition 1.15. i)Any element in z ∈ h can be mapped to the set

D := {z ∈ C : |z| ≥ 1} ∩ {z ∈ C : −1/2 ≤ Re(z) ≤ 1/2}

ii) If z and z′ are elements of D with the same image in h, then z = ±µz′ or
z = ±ζz′ and z, z′ both lie on the boundary of D.

Proof. By the above exercise we have =γz → 0 as c, d → ∞. Thus there exists
λ ∈ Γ for which =λz is maximal. Suppose |λz| < 1, then applying µ we have
=µλz = 1/|λz| > 1, contradicting =λz maximal.

Now assume z is such that =z is maximal. We see that

ζz = z + 1

Thus applying a multiple of ζ, say ζn, we can arrange 0 ≤ |<z| ≤ 1/2. By the
above we must also have |ζnz| ≥ 1 so we are done.

ii) Suppose z, z′ ∈ D and ∃γ ∈ Γ such that γz = z′. Assume =z′ ≥ =z, so that

|cz + d| ≤ 1. But we also have =z ≥
√

3
2 , hence 1 ≥ =(cz + d) ≥

√
3

2 c. It follows
that c = 0 or 1.

For the case c = 0, we must have a = 1 since detγ = 1. Then γ = ζn, so that
z′ = z + n. Since z, z′ ∈ D we have n = ±1.

Suppose now c = 1. Since |<(cz + d)| ≤ |cz + d| ≤ 1, we have d = 0,±1. We
consdier these cases separately

A) d = 0. Since |z| = |cz + d| ≤ 1 we have |z| lies on the boundary of D. In this

case γ =

(
a −1
1 0

)
= ζaµ, thus a = 0,±1. If a = 0, we are done, otherwise since

|µz| = 1 we have z = ω or ω2, and in each of these two cases γz = z. �
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Thus any complex torus if isomorphic to EΛτ for some τ ∈ D, and the τ is
unique up to identifications on the boundaries, which in turn is identified with the
quotient set Γ\h. However there is a little more we can say.

Exercise: Let ω = 1+
√
−3

2 For z ∈ D let Γ(z) denote the stabilizer of D. Show
that

Γz =


±I z 6= i, ω, ω2

±I,±µ z = i

±I,±µλ−1,±λµ z = ω

±I,±µλ,±λ−1µ z = ω2

Theorem 1.16. The set Γ\h has a natural structure of a Riemann surface.

Proof. i) Since the action of Γ/± I is no longer free, there is some subtlety when it
comes to defining charts around the points i and ω. This is done in the last chapter
of Serre’s ”A Course in Arithmetic.”

ii) Exercise. �

Remark 1.17. The quotient Γ\h is an example of a moduli space. These are spaces
whose points correspond to some isomorphism class of objects (eg. complex tori).
It turns out that if one wants to some study a certain type of object, it can prove
to be very fruitful to actually study the moduli space of such objects.

Definition 1.18. The modular curve of level 1 is the Riemann surface

Y (1) := Γ\h

The two types of Riemann surfaces that we have constructed will play the role of
C/2πiZ as in the Kronecker Weber theorem. The reason there are two types of Rie-
mann surfaces appearing is because the Hilbert class field for imaginary quadratic
fields can be non-trivial. Given a quadratic imaginary field K, the elliptic curves
with CM by K will determine points on Y (1) whose images under a meromorphic
map will generate the Hilbert class field of K. The torsion points of elliptic curves
with CM by K will then generate the rest of the abelian extension in analogy with
the case for Q.

Our task now now will be to study the meromorphic functions on these Riemann
surfaces analogous to the exponential function.
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